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ABSTRACT

We address a new variant of packing problem called the circle bin packing problem (CBPP), which
is to find a dense packing of circle items to multiple square bins so as to minimize the number of
used bins. To this end, we propose an adaptive large neighborhood search (ALNS) algorithm, which
uses our Greedy Algorithm with Corner Occupying Action (GACOA) to construct an initial layout.
The greedy solution is usually in a local optimum trap, and ALNS enables multiple neighborhood
search that depends on the stochastic annealing schedule to avoid getting stuck in local minimum
traps. Specifically, ALNS perturbs the current layout to jump out of a local optimum by iteratively
reassigns some circles and accepts the new layout with some probability during the search. The accep-
tance probability is adjusted adaptively using simulated annealing that fine-tunes the search direction
in order to reach the global optimum. We benchmark computational results against GACOA in het-
erogeneous instances. ALNS always outperforms GACOA in improving the objective function, and
in several cases, there is a significant reduction on the number of bins used in the packing.

1. Introduction
Packing problems form an important class of combina-

torial optimization problems that have been well studied un-
der numerous variants [1, 2, 3, 4]. It is a classic type of
NP-hard problems, for which there is no deterministic algo-
rithm to find exact solutions in polynomial time unless P =
NP . Also, there are numerous applications in the industry,
such as shipping industry [5, 6], manufacturing materials [7,
8], advertisement placement [9, 10], loading problems [11,
12], and more exotic applications like origami folding [13,
14]. Packing problems are well studied since 1832 Farkas et
al.[15, 3] investigated the occupying rate (density) of pack-
ing circle items in a bounded equilateral triangle bin, and
since then tremendous improvements have been made [16,
17]. In the past three decades, most researches focus on the
single container packing. The container is either in square,
circle, rectangle, or polygon shape [18], while the items can
be rectangles, circles, triangles, or polygons.

As one of the most classic packing problem, the circle
packing problem (CPP) is mainly concerned with packing
circular items in a container. Researchers have proposed var-
ious methods for finding feasible near-optimal packing solu-
tions [19, 20, 21, 22], which fall into two types: constructive
optimization approach and global optimization approach.

The construction approach places the circle items one by
one appropriately in the container based on a heuristic that
defines the building rules to form a feasible solution. Most
researches of this category either fix the position of the con-
tainer’s dimension and pack the items sequentially satisfying
the constraints [23], or adjust the size of the container using
a constructive approach [22]. Representative approaches in-
clude the Maximum Hole Degree (MHD) based algorithms
[24, 25, 26], among which Huang et al. [24] came up with
two greedy algorithms: "B.10" places the circle items based
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on MHD, while "B.15" strengthens the solution with a self-
look-ahead search strategy. Another approach called Pruned
Enriched Rosenbluth Method (PERM) [27, 28, 29] is a pop-
ulation control algorithm incorporating the MHD strategy.
There are also other heuristics such as the Best Local Posi-
tion (BLP) based approaches [30, 19, 31, 32], which selects
the best feasible positions to place the items among other
positions that minimizes the size of the container.

On the other hand, the global optimization technique [33]
tries to solve the packing problem by improving the solution
iteratively based on an initial solution, which is subdivided
into two types. The first type is called the quasi-physical
quasi-human algorithm [34, 35, 36], which is mostly moti-
vated by some physical phenomenon, or some wisdom ob-
served in human activities [37, 38]. The second type is called
the meta-heuristic optimization, mainly built by defining an
evaluation function that employs a trade-off of randomisa-
tion and local search that directs and re-models the basic
heuristic to generate feasible solutions. The meta-heuristic
searches an estimation in the solution space closing to the
global optimum. Representative algorithms include the hy-
brid algorithm [39] that combines the simulated annealing
and Tabu search [40, 41]. Recently another hybrid algo-
rithm was proposed by combining Tabu search and Vari-
able Neighborhood Descent, and yield state-of-the-art re-
sults [42].

In this work, we address a new variant of packing prob-
lem called the two-dimensional circle bin packing problem
(CBPP) [21]. Given a collection of circles specified by their
radii, we are asked to pack all items into a minimum number
of identical square bins. A packing is called feasible if no
circles overlap with each other or no circle be out of the bin
boundary. The CBPP is a new type of geometric bin packing
problem, and it is related to the well-studied 2D bin packing
problem [43, 44], which consists in packing a set of rectan-
gular items into a minimum number of identical rectangular
bins.

This manuscript is an extended version with significant
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Adaptive Large Neighborhood Search for CBPP

improvement on the algorithm of our previous conference
publication [21], among which we first introduce this prob-
lem and propose a Greedy Algorithm with Corner Occu-
pying Action (GACOA) to construct a feasible dense lay-
out [21]. In this paper, we further strengthen the packing
quality and propose anAdaptive LargeNeighborhood Search
(ALNS) algorithm. ALNSfirst calls GACOA to construct an
initial solution, then iteratively perturbs the current solution
by randomly selecting any two used bins and unassigning
circles that intersect a random picked region in each of the
selected bin. Then we use GACOA to pack the outside cir-
cles back into the bin in order to form a complete solution.
The complete solution is accepted if the update layout in-
creases the objective function or the decrease on the objec-
tive function is probabilistically allowed under the current
annealing temperature. Note that the objective function is
not the number of bins used but is defined to assist in weigh-
ing the performance to reach the global optimum of the new
candidate solution. Computational numerical results show
that ALNS always outperforms GACOA in improving the
objective function, and sometimes ALNS even outputs pack-
ing patterns with less number of bins.

In this work, we make three main contributions:
1) we design a new form of objective function, embed-

ding the number of containers used and the maximum dif-
ference between the containers with the highest density and
the box with the lowest density. The new objective function
can help identify the quality of the assignment, especially in
the general case with the same number of bins.

2) we propose a method for local search on the complete
assignment solution. We select two bins randomly and gen-
erate a rectangular area for each bin with equal area. All the
circles that intersect the rectangular area were unassigned
and the remaining circles form the new partial solution.

3) we modify the conditions for receiving the new partial
solution. The previous local neighborhood search algorithm
only accepts new partial solutions with larger objective func-
tions. However, it is not conductive to the global optimum
to some extent. We apply the idea of simulated annealing to
this new algorithm so that partial solutions with lower ob-
jective function values can also be accepted with a variable
possibility.

The remaining of this paper is organised as follows. Sec-
tion 2 introduces the mathematical constraints for the given
problem, Section 3 presents the two frameworks used for the
development of our algorithm. Section 4 further describes
the objective function as well as the experimental setup. All
the algorithms are computationally experimented and the re-
sults presented in Section 5. Finally, Section 6 concludes
with recommendations for future work.

2. Problem Formulation
Given a set of n circles where itemCi is in radius ri and n

identical square bins with side lengthL (w.l.g. for any circle
Ci, 2 ⋅ ri ≤ L), the CBPP problem is to locate the center
coordinates of each Ci such that any item is totally inside a
container and there is no overlapping between any two items.

The goal is to minimize the number of used bins, denoted as
K (1 ≤ K ≤ n).

A feasible solution to the CBPP is a partition of the items
into sets  = ⟨S1, S2,… , SK⟩ for the bins, and the pack-
ing constraints are satisfied in each bin. An optimal solution
is the one in which K , the number of bins used, cannot be
made any smaller. A summary of the necessary parameters
is given in Table 1.

Table 1
Parameter regulation

Parameter Description
n number of circles
Ci the i-th circle
ri radius of the i-th circle

(

xi, yi
)

center coordinates of Ci
bk the bin that Ci is assigned, 1 ≤ k ≤ K
L side length of square bin
Iik indicator of the placement of Ci into bk
Bk indicator of the use of bin bk
dij distance between (xi, yi) and (xj , yj)

Assume that the bottom left corner of each bin bk is placed
at (0, 0) in it’s own coordinate system. we formulate the
CBPP as a constraint optimization problem.

.......................
n
∑

k=1
Iik = 1, (1)

where

Iik ∈ {0, 1}, i, k ∈ {1,… , n}, (2)

which implies that each circle is packed exactly once. Fur-
ther, if a bin bk is used, then

Bk =
{

1, if
∑n
i=1 Iik > 0, i, k ∈ {1,… , n},

0, otherwise. (3)

And, finally, for circles that are in the same bin, Iik = Ijk =
1, and i, j, k ∈ {1,… , n}, no overlap is allowed, implying
that

dij =
√

(xi − xj)2 + (yi − yj)2 ≥ (ri + rj)IikIjk. (4)

Specifically, let the circles be ordered by their radii so that
r1 ≥ r2,… ≥ rn, ri ∈ +. To ensure that no item passes
across the boundary of the bin, we ask that

ri ≤ xi ≤ L − ri, ri ≤ yi ≤ L − ri (5)

Conditions (1)–(4) alongwith (5) are the constraints for CBPP.
The overall goal of CBPP is to use as few bins as possible

to pack the n circles, which is

.......................minK =
n
∑

k=1
Bk. (6)
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3. General Search Framework
In this section, we introduce two general optimization

search frameworks for constraint optimization problem that
we will use for the development of our CBPP algorithm.
The two frameworks are Large Neighborhood Search (LNS),
and a variation of the well-studied simulated annealing pro-
cess [45], Adaptive LargeNeighborhood Search (ALNS) [46].
A particular advantage of ALNS is the capacity to move the
iterated solution out of the local optimum.

3.1. Large neighborhood search
Large neighborhood search (LNS) is a technique to iter-

atively solve constraint optimization problems [46, 47]. At
each iteration, the goal is to find a more promising candi-
date solution to the problem, and traverse a better search path
through the solution space.
Definition 1. (Constraint optimization problem, COP).
A constraint optimization problem P = ⟨n,Dn,, f⟩ is de-
fined by an array of n variables that can take values from
a given domain Dn, subject to a set of constraints . f is
the objective function to measure the performance of assign-
ment. An assignment is an array of values an ∈ Dn. A
constraint c ∈  ∶ Dn → {0, 1} is a predicate that de-
cides whether an assignment an ∈ Dn is locally valid. A
solution to P is an assignment an that is locally valid for all
constraints in , i.e. c (an) is true for all c ∈ . The opti-
mal solution of P is a solution that maximizes the objective
function f .

In a nutshell, LNS starts from a non-optimal solution an
and iteratively improves the solution until reaching an opti-
mal or near-optimal solution. The main ingredient in LNS
is an effective algorithm for completing a partial solution.
Definition 2. (Partial solution). A partial solution

⟨

k, ak, I
⟩

is an assignment ak to a subset of k variables (with their in-
dexes I) of a constraint optimization problem P . Complet-
ing a partial solution means finding an assignment for the
remaining variables

{

ai|i ∉ I
}

so that an is a solution to P .
At each iteration, LNS relaxes and repairs the solution

by randomly generating and then completing a partial solu-
tion (Alg. 1). If the new assignment bn has higher objective
function value, the previous assignment an will be replaced.

Algorithm 1: Large neighborhood search
Input : A COP P = ⟨n,Dn,, f⟩,

number of iteration stepsN
Output: A near-optimal solution an

1 an ← compute_initial_solution(P )
2 for i← 1 toN do
3 I ← generate_partial_solution(an);
4 bn ← complete_partial_solution (an, I, f );
5 if f (bn) > f (an) then
6 an ← bn;
7 end
8 end

3.2. Adaptive large neighborhood search
The new solution bn obtained by complete

_partial_solution of LNS should be better than the previous
solution an in order to be accepted (lines 5-7). But, in some
sense, this approach actually limits the search for finding a
global optimal solution. Thus, we consider an adaptive ver-
sion of LNS, called ALNS [46], obtained by altering LNS to
allow for stepping to worse solutions. This depends on a pre-
defined stochastic annealing schedule [46, 45], thus allowing
for the solution search space to break out of local optima. We
give a generic description of the ALNS algorithm in Alg. 2,
and a more complete explanation of the framework will be
presented in Section 4.

Algorithm 2: Adaptive large neighborhood search
Input : A COP P = ⟨n,Dn,, f⟩,

number of iteration stepsN
Output: A near-optimal solution an

1 an ← compute_initial_solution(P );
2 Θ← initial temperature;
3 � ← Θ;
4 for i← 1 toN do
5 I ← generate_partial_solution (an);
6 bn ← complete_partial_solution(an, I, f );
7 if acceptMove(bn, an, �) then
8 an ← bn;
9 end

10 � = � − Θ∕N ;
11 end

4. ALNS for CBPP
4.1. Domain and objective function

For the CBPP as a constraint optimization problem
(COP), we define its domain Dn as follows. For each cir-
cle Ci, its assignment variables include ⟨xi, yi, Ii1, ..., Iin⟩.
We simplify the notation to aik = ⟨xi, yi, bk⟩ if Iik = 1.
The corresponding domain D = ℝ2 × {1,… , n} defines
all possible assignments of a circle in the bin–coordinate
space. Since each circle Ci is constrained by an indicator
function to be put only in a single bin, we abuse the nota-
tion slightly, simply use ai to denote aik, and place an em-
phasis on the circles rather than the containers, and each of
the components where i ∈ {1,… , n} is a 3-tuple denoted as
⟨xi, yi, bk⟩. Thus, when referring to a solution to P , we write
an, andDn = D×D×…×D corresponds to the domain for
the n tuple variables. So an denotes a possible packing.

LetL2 be the area of a bin, the density of bk of a packing
is defined as

.......................dk(an) =
1
L2

∑

Ci∈Sk

�r2i Iik. (7)

where Sk is the set of items assigned to bk. Let K be the
number of used bins for a solution an, so

.......................K =
n
∑

k=1
Bk. (8)
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Let dmin = min{dk(an)|1 ≤ k ≤ K},
dmax = max{dk(an)|1 ≤ k ≤ K}.

Here dmin denotes the density of the sparsest bin and dmax
the density of the densest bin. We define a useful objective
function, which will form part of our algorithm as

..............f (an) = −K + dmax − dmin. (9)

The larger the value of f (⋅) is, the better the packing is,
since an increase in f (⋅) corresponds to a denser packing as
circles move out of lower density bins. In order to clarify
the process for taking a complete candidate solution an for
P to a partial solution, the following formal definitions are
required.

Note that 0 ≤ dmax−dmin ≤ 1, this term is used for regu-
larization. It implies that using fewer bins is preferable, that
a difference in the number of bins is enough to compare two
candidate solutions. With the same number of used bins in
different solutions, we focus on the fullest bin and the emp-
tiest bin on each candidate solution. The more dense the
fullest bin is, the less wasted space is. The more sparse the
emptiest bin is, the more concentrated the remaining still-
reserved space is, which means it would be easier for assign-
ing subsequent circles. So, the difference in density between
the fullest bin and the emptiest bin determines the quality of
each candidate solution.

4.2. Construct initial solution
An initial solution can be quickly constructed by our greedy

algorithm GACOA (Alg. 3).

compute_initial_solution(P ) = GACOA(L, {Ci|1 ≤ i ≤ n})
(10)

For each circle, GACOA computes a set of candidate po-
sitions by greedily moving on to the next bin if a circle can-
not be packed in any of the previous bins. In particular, each
circle is packed according to the following criteria.
Definition 5. (Candidate packing position). A candidate-
packing position of a circle in a bin is any position that places
the circle tangent to a) any two packed items, or b) a packed
item and the border of the bin, or c) two perpendicular sides
of the bin (i.e. the corner).
Definition 6. (Feasible packing position). A packing posi-
tion of a circle in a bin is feasible if it does not violate any
constraints: circles do not overlap and be fully contained in
a bin. (See Eq. (1)–(5) for detailed constraints).
Definition 7. (Quality of packing position). The distance
between the feasible packing position and the border of the
bin is given by

q (x, y) =
{

min
(

dx, dy
)

,max
(

dx, dy
)}

. (11)

where dx (resp. dy) is a distance between the center of the
circle and the closer side of the bin in the horizontal (resp.
vertical) direction. For a circle in the current target bin, all

feasible positions in the bin are sorted in dictionary order of
q(x, y). The smaller, the better.

We call an action that places a circle onto one of its can-
didate packing positions a Corner Occupying Action (COA).
GACOAworks by packing circles one by one in the decreas-
ing order of their radii. Each circle considers the target bin
in the increasing order of the bin index k. For bin bk, a fea-
sible candidate packing position with the highest quality is
selected, i.e. a feasible assignment that maximizes q(x, y)
will be executed. Thus, the best feasible COA is selected
that favours positions closer to the border of the bin. If there
is no feasible assignment in bin bk, we will try to pack in the
next bin bk+1. The pseudo code is given in Alg. 3.

Algorithm 3: GACOA
Input: Bin side length L, a set of n circles

{Ci|1 ≤ i ≤ n} with radii r1,… , rn (ri ≥ ri+1)
Result: For each circle Ci, find a bin bk, and place

the circle center at
(

xi, yi
)

1 K ← 0
2 for i← 1 to n do
3 for k ← 1 to n do
4 Sk ← ∅;
5 while true do
6 if k > K then
7 K = k
8 end
9 Sk ← Feasible packing positions for Ci;

10 if Sk ≠ ∅ then
11 break
12 end
13 k← k + 1
14 end
15 A best packing position from Sk is selected

according q(x, y);
16

(

xi, yi
)

← argmax(x,y)∈S q (x, y);
17 Execute this packing position to pack circle

Ci into bin bk;
18 end
19 end

Partial solutions are generated from a complete solution
by selecting two bins at random and do perturbations. We
randomly select a rectangular area of equal size in each bin,
all circles that intersect the two rectangular areas will be
taken out and added to the remain2assign set, and the com-
plete solution becomes a partial solution. The unassigned
circles will be reassigned based on the partial solution. This
is equivalent to perturbing a complete solution that has
reached a local optimum. Let function random_ints(m,M)
returns m distinct integers randomly selected from set M .
Let function random_real (R) returns a random real number
0 < r ≤ R.

Alg. 5 randomly selects a circle in the non-empty bin,
and then randomly generates a rectangular area with the cir-
cle center be the center of the area. This guarantees that at
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Algorithm 4: Generate partial solution
Input : A (complete) solution an
Output: A partial solution given by the indexes to

keep I
// Select two bins randomly

1
(

k1, k2
)

← random_ints(2, {1,… , K)})
// Select a rectangular area in the first bin

2 rect1 ← sample_rects(bk1 )
// Select a rectangular area in the second bin

3 rect2 ← sample_rects(bk2 )

4 remain2assign ←
⋃

j∈{1,2}{i|
⟨

xi, yi, bkj
⟩

∈
an, Iikj = 1

⋀

intersects(Ci, rectj) == T rue}
5 I ← I∕remain2assign

least one circle will intersect the generated rectangular area
(Here we simply use the envelope rectangle of the circle to
check its intersection with the area). In most cases, more
than one circle items intersect the rectangular area and will
be unassigned at each iteration. We choose to select two bins
and generate one rectangular area for each bin. Only one bin
can be sampled at a time, but when the partial solution and
unassigned circle set are continued to be placed in the future,
in the worst case, it will be put back as it is to obtain the same
complete solution as before. The worst instance is that the
previous partial solution did not leave enough free space to
allocate the unassigned circles except for the generated area.
If there is only one bin and one rectangular area, the unas-
signed circles are very likely to be put back into the previous
generated rectangular area during the iteration, which means
that this iteration process has no effect and does not help
jump out of the local optimum. Thus, two bins are selected
for each iteration so that the unassigned circles have more
free space to be allocated. Even in the worst case, the algo-
rithm will try to exchange the circles in the two rectangular
areas, which ensures that there will be some disturbance per
iteration. Of course, an alternative way is to sample only one
bin and generate two rectangular areas for the bin, but two
rectangular areas in different bins can increase the random-
ness.

4.3. Complete a partial solution
Completing a partial solution is performed efficiently by

the GACOA algorithm (Alg. 3) restricted to the bins bk1, bk2
from which circles were unassigned in the previous step.

complete_partial_solution (an, I) =
GACOA

(

L,
{

Ci|i ∈ remain2assign
}) (12)

I is the partial solution generated by
generate_partial_solution(). GACOA is used to complete
the partial solution.

4.4. Acceptance metric
A solution is accepted if it increases the objective func-

tion or if the decrease in the objective function is proba-
bilistically allowed given the current annealing temperature

Algorithm 5: sample_rects
Input : Index of bin k; side length of bin L
Output: rectangle area Rects
// Each rectangle is represented as a bottom-left

point and a top-right point

1 w← random_real(L)// the width of rectangle

area is w

2 ℎ← random_real(L) // the height of rectangle

area is h

3 let lx ← 0, ly ← 0 // where (lx, ly) is the coordinate

of bottom-left point

4 if (!bk.empty()) then
5 i ← random_ints(1,

{

i |
|

⟨xi, yi, bk⟩ ∈ an
}

)
6 lx ← Ci.x − 0.5w
7 ly ← Ci.y − 0.5ℎ
8 end
9 Rects = make_

pair(point(lx, ly),point(lx +w, ly + ℎ))

Algorithm 6: intersects
Input : circle Ci, rectk with coordinate tuple

<lx, ly, lx +w, ly + ℎ>
Output: true or false
// returns if Ci intersects the rectangle

1 if Ci.x − Ci.r ≥ lx +w then
2 return false // non-intersect

3 end
4 if Ci.y − Ci.r ≥ ly + ℎ then
5 return false // non-intersect

6 end
7 if Ci.x + Ci.r ≤ lx then
8 return false // non-intersect

9 end
10 if Ci.y + Ci.r ≤ ly then
11 return false // non-intersect

12 end
13 return true // intersect

�. This is the well-known simulated annealing move accep-
tance criteria [45],

acceptMove(bn, an, �) = f (bn) > f (an)

∨random_real(1) ≤ e
f (bn)−f (an)

�
(13)

4.5. ALNS for CBPP
The complete algorithm for solving CBPP requires vari-

ous steps from the above. The ALNS procedure is started us-
ing the initial solution along with the temperature Θ and the
number of iterations N . The initial solution is then broken
using Alg. 4 and re-completed using the new solution filled
by GACOA. This procedure outputs a new candidate solu-
tion, which is then either accepted or rejected based on the
acceptancemetric with simulated annealing. At which point,
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n0 n alg. bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 f fA − fG

8 40 A 0.83 0.80 0.76 0.74 0.65 - -5.18 0.08G 0.83 0.74 0.71 0.76 0.73 - -5.10

9 45 A 0.81 0.81 0.80 0.76 0.75 - -5.81 1.26G 0.76 0.72 0.75 0.75 0.72 0.21 -6.55

10 50 A 0.83 0.82 0.79 0.78 0.76 0.08 -6.75 0.09G 0.84 0.78 0.80 0.75 0.72 0.18 -6.66

11 55 A 0.84 0.82 0.80 0.78 0.77 - -5.84 1.20G 0.83 0.78 0.77 0.75 0.69 0.19 -6.64

12 60 A 0.84 0.81 0.80 0.80 0.80 - -5.84 1.23G 0.84 0.79 0.78 0.72 0.69 0.23 -6.61

13 65 A 0.83 0.81 0.81 0.81 0.80 0.05 -6.78 0.25G 0.83 0.79 0.76 0.72 0.69 0.31 -6.52

14 70 A 0.83 0.82 0.82 0.81 0.79 0.09 -6.74 0.21G 0.84 0.82 0.77 0.71 0.71 0.32 -6.52

15 75 A 0.83 0.83 0.82 0.81 0.81 0.05 -6.78 0.25G 0.85 0.81 0.76 0.70 0.70 0.32 -6.53

16 80 A 0.84 0.84 0.82 0.81 0.79 0.08 -6.76 0.18G 0.85 0.82 0.81 0.73 0.71 0.26 -6.58

17 85 A 0.85 0.83 0.82 0.81 0.80 0.11 -6.74 0.14G 0.85 0.82 0.79 0.75 0.75 0.26 -6.60

18 90 A 0.85 0.83 0.82 0.81 0.81 0.11 -6.74 0.17G 0.85 0.80 0.80 0.79 0.71 0.29 -6.57

19 95 A 0.85 0.83 0.82 0.81 0.81 0.12 -6.73 0.21G 0.84 0.81 0.80 0.77 0.69 0.32 -6.52

20 100 A 0.84 0.83 0.82 0.81 0.80 0.12 -6.72 0.17G 0.86 0.81 0.78 0.77 0.71 0.31 -6.55

Table 2
Experimental results on the fixed benchmarks with square bins when ri = i. The average
improvement is 0.19.

if the iteration limit has not reached, the process restarts us-
ing the new solution as an input

An illustration of the entire parameter setup flow ofALNS
algorithm is shown in Figure 1.

5. Computational Experiments
To evaluate the competency of the proposed approach,

we implemented the ALNS for CBPP using the Visual C++
programming language. All results were generated by set-
ting N = 2 × 106 (Alg. 2) and obtained in a computer with
Intel Core i7-8550U CPU @ 1.80GHz.

We generated benchmarks based on two groups of in-
stances downloaded from www.packomonia.com for Single Cir-
cle Packing Problem (SCCP): ri = i for wide variation in-
stances and ri =

√

i for smaller variation instances. On the
packomania website, we use the range seed (number of cir-
cles for SCCP) from 8 to 20, and generate sets of benchmarks
as follows: For each square bin, the best solution found in
[48] for the SCPP was used to fix the bin size L as the best
known record Lbest known record and we generate two sets of
benchmarks called “fixed" and “random".Let S = {Ci|1 ≤ i
≤ n} be the set of circles packed in the current best solution
for SCPP . The fixed set of CBPP benchmarks contains ex-
actly 5 copies of each circle packing for SCPP. The rand set
of CBPP benchmarks contains a random number (2 ≤ r ≤ 5)

of copies of each circle (i.e., the number of copies of each
circle varies across the same benchmark) packed for SCPP.

In the following tables we get 52×2 generated instances
from the two groups of instances, we compare the number of
bins and the objective value for the best solution obtained by
our search algorithm ALNS with the solution obtained from
our constructive algorithm GACOA. They contain, for each
original number of circles (n0) and actual number of repli-
cated circles in the CBPP benchmark (n), two rows showing
the bin densities for ALNS (A) and GACOA (G) algorithm.
The last two columns contain the final value of the objec-
tive function obtained in each algorithm and the relative im-
provement of ALNS over GACOA. Figure 2 shows in depth
the typical behavior in comparison of ALNS and GACOA
on the two benchmark instances. The objective function (f )
in the y-axis under the number of circles in the x-axis. We
can observe the packing occupying rate of ALNS is higher
than that of GACOA. An in-depth analysis is explained in
Section 5.1 and Section 5.2.

5.1. Comparison on r = i
We run ALNS and GACOA on the benchmark instances

of r = i. The number of unequal circle items ranges from 8
to 20 seeds for both fixed and random square settings. Table
2 shows the computational results of the fixed copies of 5 for
each n0. Table 3 displays the random number of copies of
the circle items ranging from 2 ≤ r ≤ 5 of the corresponding
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Figure 1: The parameter setup flow of ALNS.
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Figure 2: ALNS vs. GACOA.
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Figure 3: Solution for the fixed benchmark when n0 = 9 and n = 45.

seed. From Table 2 we can observe that when n = 45, 55,
or 60 on the fixed benchmark, ALNS utilises 5 bins, while
GACOA uses 6 bins to pack the circle items. Figure 3 illus-
trates the packing layout for n = 45. On the other hand, for
the random instances in Table 3 when n = 37 or 72, ALNS
also minimizes the number of bins by packing circles in 4
bins while GACOA packs in 5 bins. Figure 4 illustrates the
packing layout for n = 72. In summary, from the results
of all the instances, ALNS returns feasible results, and has
an overall average improvement of 19% for the fixed bench-
marks and 12% for the random benchmarks when compared
to GACOA.

5.2. Comparison on ri =
√

i
Similarly we also run ALNS and GACOA on the bench-

mark instances of ri =
√

i, which contains a smaller vari-
ation of radii. Table 4 contains fixed instances while Ta-
ble 5 contains random instances. The instances also range
from 8 to 20 seeds. As an illustration, we select n0 = 8
and n = 40 from Table 4 and illustrate the layout in Fig-
ure 5. The occupying rate for the first three bins is higher
for ALNS when compared to that of GACOA, showing that
most circle items have maximally occupied each bin’s area.
The fourth last bin’s density of the packed items for ALNS is
lower than that of GACOA, indicating that ALNS contains
fewer packed circle items in the last bin. On the random
benchmarks in Table 5 for n0 at instance 8, 12, 13, 14 and
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n0 n alg. bin 1 bin 2 bin 3 bin 4 bin 5 f fA − fG

8 34 A 0.83 0.80 0.74 0.73 0.24 -4.41 0.09G 0.83 0.74 0.74 0.70 0.33 -4.5

9 30 A 0.81 0.80 0.77 0.44 - -3.63 0.18G 0.78 0.75 0.71 0.59 - -3.81

10 37 A 0.81 0.80 0.79 0.76 - -3.95 0.4G 0.83 0.78 0.71 0.67 0.18 -4.35

11 38 A 0.83 0.81 0.79 0.00 - -3.17 0.04G 0.82 0.81 0.78 0.03 - -3.21

12 43 A 0.83 0.81 0.80 0.29 - -3.46 0.12G 0.82 0.79 0.72 0.40 - -3.58

13 44 A 0.83 0.81 0.78 0.43 - -3.6 0.17G 0.82 0.75 0.69 0.59 - -3.77

14 48 A 0.84 0.82 0.80 0.40 - -3.56 0.15G 0.82 0.77 0.73 0.53 - -3.71

15 53 A 0.85 0.83 0.81 0.32 - -3.47 0.11G 0.85 0.81 0.72 0.43 - -3.58

16 55 A 0.85 0.82 0.81 0.46 - -3.61 0.14G 0.84 0.78 0.73 0.59 - -3.75

17 53 A 0.84 0.82 0.80 0.32 - -3.48 0.15G 0.82 0.79 0.73 0.45 - -3.63

18 72 A 0.84 0.83 0.83 0.72 - -3.88 0.36G 0.84 0.81 0.78 0.70 0.08 -4.24

19 58 A 0.83 0.83 0.81 0.07 - -3.24 0.12G 0.83 0.76 0.76 0.19 - -3.36

20 78 A 0.84 0.84 0.81 0.67 - -3.83 0.01G 0.86 0.82 0.80 0.69 - -3.83

Table 3
Experimental results on the random benchmarks for ri = i. The average improvement is
0.12.
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Figure 4:

Solution for the random benchmark n0 = 18 and n = 72.

15, we also observe that ALNS uses one lesser bin in total
when compared to GACOA. The average improvement of
ALNS over GACOA is 22% for the fixed instances and 23%
for the random instances, respectively.

5.3. Further discussion
The run-times for ALNS at each benchmark are shown in

Table 6 (column of t in seconds). We see that ALNS com-
putes the instances efficiently in less than 300 seconds for
100 items. By comparison, as a greedy algorithm, GACOA
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n0 n alg. bin 1 bin 2 bin 3 bin 4 f fA − fG

8 40 A 0.83 0.83 0.76 0.30 -3.47 0.21G 0.80 0.76 0.70 0.47 -3.67

9 45 A 0.83 0.82 0.79 0.33 -3.5 0.19G 0.82 0.73 0.70 0.51 -3.69

10 50 A 0.83 0.81 0.80 0.38 -3.55 0.15G 0.84 0.76 0.69 0.54 -3.7

11 55 A 0.84 0.81 0.81 0.40 -3.56 0.09G 0.83 0.78 0.77 0.48 -3.65

12 60 A 0.83 0.83 0.81 0.39 -3.56 0.07G 0.83 0.80 0.77 0.46 -3.63

13 65 A 0.84 0.83 0.80 0.40 -3.56 0.10G 0.83 0.82 0.72 0.49 -3.66

14 70 A 0.85 0.82 0.81 0.36 -3.51 0.08G 0.84 0.79 0.78 0.43 -3.59

15 75 A 0.84 0.83 0.82 0.37 -3.53 0.08G 0.85 0.80 0.75 0.46 -3.61

16 80 A 0.86 0.83 0.81 0.38 -3.52 0.12G 0.85 0.81 0.73 0.49 -3.64

17 85 A 0.85 0.84 0.81 0.39 -3.54 0.13G 0.83 0.79 0.77 0.50 -3.67

18 90 A 0.87 0.82 0.80 0.41 -3.54 0.09G 0.85 0.80 0.76 0.48 -3.63

19 95 A 0.85 0.82 0.82 0.40 -3.55 0.05G 0.86 0.82 0.77 0.45 -3.59

20 100 A 0.86 0.82 0.82 0.41 -3.55 0.05G 0.87 0.80 0.77 0.47 -3.6

Table 4
Experimental results on the fixed benchmarks when ri =

√

i. The average improvement of
0.22.
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Figure 5: Solution for the fixed benchmark when n0 = 8 and n = 40 when ri =
√

i.

completes the calculation in microseconds on any of these
benchmarks. Such property facilitates the high efficiency of
the ALNS algorithm.

In summary, for all the generated instances, we compare
the number of bins and the objective value for the best solu-
tion obtained by ALNS algorithm with solutions obtained
by GACOA. The results clearly show that ALNS consis-

tently improves the objective function value as compared to
GACOA over all sets of benchmarks, and it was even able to
reduce the number of bins used in some benchmarks.
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n0 n alg. bin 1 bin 2 bin 3 bin 4 bin 5 f fA − fG

8 37 A 0.84 0.83 0.67 - - -2.83 0.41G 0.80 0.75 0.74 0.04 - -3.24

9 35 A 0.82 0.81 0.42 - - -2.6 0.19G 0.77 0.72 0.56 - - -2.79

10 45 A 0.83 0.82 0.81 0.37 - -3.54 0.17G 0.83 0.76 0.69 0.54 - -3.71

11 44 A 0.84 0.81 0.81 0.39 - -3.55 0.10G 0.83 0.78 0.77 0.48 - -3.65

12 52 A 0.84 0.82 0.80 - - -2.96 0.69G 0.83 0.78 0.77 0.48 - -3.65

13 71 A 0.85 0.83 0.81 0.76 - -3.91 0.38G 0.83 0.83 0.75 0.70 0.12 -4.29

14 55 A 0.84 0.83 0.75 - - -2.91 0.27G 0.85 0.80 0.76 0.03 - -3.18

15 53 A 0.83 0.83 0.71 - - -2.88 0.41G 0.84 0.74 0.65 0.13 - -3.29

16 48 A 0.83 0.82 0.60 - - -2.77 0.11G 0.81 0.75 0.69 - - -2.88

17 72 A 0.84 0.82 0.81 0.30 - -3.46 0.13G 0.82 0.77 0.77 0.41 - -3.59

18 66 A 0.82 0.81 0.80 0.12 - -3.3 0.09G 0.82 0.78 0.75 0.21 - -3.39

19 75 A 0.84 0.82 0.81 0.24 - -3.4 0.04G 0.84 0.81 0.78 0.28 - -3.44

20 58 A 0.81 0.81 0.79 0.06 - -3.25 0.10G 0.78 0.78 0.76 0.14 - -3.36

Table 5
Experimental results on the random benchmarks for ri =

√

i. The average improvement is
0.23.

(a) Packing layouts generated by ALNS algorithm

(b) Packing layouts generated by GACOA algorithm

Figure 6:

Solution for the random benchmark with n0 = 13 and n = 71 when ri =
√

i.

The results show that our objective function does guide
the ALNS algorithm to search for dense packing and pro-
mote reducing the number of bins used.

6. Conclusions
We address a new type of packing problem, two dimen-

sional circle bin packing problem (2D-CBPP), and propose
an adaptive local search algorithm for solving this NP-Hard
problem. The algorithm adopts a simulated annealing search
on our greedy constructive algorithm. The initial solution is
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ri = i ri =
√

i
fixed random fixed random

n0 n t n t n t n t
8 40 82 34 59 40 53 37 42
9 45 72 30 63 45 87 35 61
10 50 74 37 69 50 76 45 59
11 55 91 38 160 55 88 44 82
12 60 103 43 120 60 107 52 81
13 65 116 44 127 65 137 71 142
14 70 135 48 148 70 152 55 145
15 75 154 53 177 75 182 53 210
16 80 179 55 189 80 180 48 163
17 85 204 53 179 85 202 72 227
18 90 222 72 339 90 216 66 197
19 95 247 58 209 95 234 75 261
20 100 279 78 366 100 255 58 251

Table 6
Runtimes for ALNS execution in all benchmarks.

built by the greedy algorithm. Then during the search, we
generate a partial solution by randomly selecting rectangular
areas in two bins and remove the circle items that intersect
the areas. And we implement our greedy algorithm for com-
pleting partial solutions during the search. To facilitate the
search, we design a new form of objective function, embed-
ding the number of containers used and the maximum gap of
the densities of different containers. A new solution is con-
ditionally accepted by simulated annealing, completing one
iteration of the search.

Despite to all the improvements in this work, it is highly
noted that the proposed problem is indeed challenging for
combinatorial optimization heuristics and future researches
are needed to get better solutions and generate high quality
benchmarks. Implementing an adaptive local neighborhood
search seems to be an attractive meta-heuristic to adopt. we
would like to explore the idea to other circle bin packing
problems, and extend our approach in addressing three di-
mensional circle bin packing problem which is more chal-
lenging with many applications that deserves proper atten-
tion.
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