• Login
    View Item 
    •   Repository Home
    • Journal Articles
    • Institute of Computing and Informatics (ICI)
    • View Item
    •   Repository Home
    • Journal Articles
    • Institute of Computing and Informatics (ICI)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Students Selection for University Course Admission at the Joint Admissions Board (Kenya) Using Trained Neural Networks

    Thumbnail
    View/Open
    Students_Selection_for_University_Course_Admission.pdf (528.7Kb)
    Date
    2011-01
    Author
    Wabwoba, Franklin
    Mwakondo, Fullgence M
    Metadata
    Show full item record
    Abstract
    Every year, the Joint Admission Board (JAB) is tasked to determine those students who are expected to join various Kenyan public universities under the government sponsorship scheme. This exercise is usually extensive because of the large number of qualified students compared to the very limited number of slots at various institutions and the shortage of funding from the government. Further, this is made complex by the fact that the selections are done against a predefined cluster subjects vis a vis the student’s preferred and applied for academic courses. Minimum requirements exist for each course and only students having the prescribed grades in specific subjects are eligible to join that course. Due to this, students are often admitted to courses they consider irrelevant to their career prospects and not their preferred choices. This process is tiresome, costly, and prone to bias, errors, or favour, leading to disadvantaging innocent students. This paper examines the potential use of artificial neural networks at the JAB for the process of selecting students for university courses. Based on the fact that Artificial Neural Networks (ANNs) have been tested and used in classification, the paper explains how a trained neural network can be used to perform the students’ placement effectively and efficiently. JAB will be able, therefore, to undertake the students’ placement thoroughly and be able to accomplish it with minimal wastage of time and resources respectively without having to utilise unnecessary effort. The paper outlines how the various metrics can be coded and used as input to the ANNs. Ultimately, the paper underscores the various merits that would accompany the adoption of this technique. By making use of neural networks in the university career choices, student placement at JAB will enhance the chances of students being placed into courses they prefer as part of their career choice. This is likely to motivate the students, making them work harder and leading to improved performance and improved completion rate. The ANN application may also reduce the cost spend on the application processing and the time the applicants have to wait for the outcome. The ANN application could further increase the chances of high quality applicants getting admission to career courses for which they qualify.
    URI
    http://ir.tum.ac.ke/handle/123456789/17461
    Collections
    • Institute of Computing and Informatics (ICI)

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian